
IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) 

 e-ISSN: 2278-1676,p-ISSN: 2320-3331, Volume 12, Issue 4 Ver. III (Jul. – Aug. 2017), PP 35-43 

www.iosrjournals.org 

DOI: 10.9790/1676-1204033543                                         www.iosrjournals.org                                     35 | Page 

 

Stabilization of Continuous-time and Discrete-time Switched 

Systems: A Review    
 

*Parikha Mehrotra
1
, Dr. Bharat Bhushan Sharma

2  

1
(Student of Electrical Engineering Department, National Institute of Technology Hamirpur, India-177005) 

2
(Associate Professor with Electrical Engineering Department, National Institute of Technology Hamirpur, 

India-177005)  

Corresponding Author: *Parikha Mehrotra 

 

 Abstract : Stability problem for a class of linear continuous time and discrete time systems is well understood 

since long. This analysis has also been extended to switched linear systems with continuous and discrete 

descriptions. For such cases, arbitrary switching problem is addressed by constructing common quadratic and 

non-quadratic Lyapunov function. Moreover, keeping in view the invertible time delays in dynamical systems 

due to internal factors or external environment, study of switched systems with delays has become quite 

challenging. The present work, highlights the state of art review of switched systems and underlying 

methodologies to ensure stabilization of such system with individual systems having stable or unstable 

dynamics. Further, current status and future directions of possible scope and open challenges in this area are 

also highlighted for completeness.  
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I. Introduction 
Stability analysis and control of linear continuous time and discrete time systems have been studied 

since long by various researchers. This analysis has also been extended to hybrid systems which are commonly 

used in practice. Switched control systems find prominent place in linear continuous and discrete time systems 

class. Many contributions have been made in literature to address the issues of stability and controller design for 

linear switched systems over the years. In this paper, the review of stabilization, controllability and observability 

of switched hybrid systems is presented. The objective of this paper is to highlight the milestones in the 

development of the aforementioned areas and to review the problems that remain open. Firstly, various tools for 

stability analysis, including common Lyapunov and multiple Lyapunov functions, LMIs and LaSalle’s 

invariance principle etc. are discussed and brief description of pioneering works of some authors in this 

direction is also made. Secondly, the controllability concept in switched hybrid control systems is studied.  

Various related definitions of controllability are introduced and brief summary about the most recent 

and early papers written in this domain is presented. Along with that, work on observability and related concepts 

is also highlighted and finally, the problems arising during the analysis of switched hybrid systems are stated. 

The paper is concluded with a note on future directions. 

 

II. Stabilization of hybrid switched systems 
A switched system is a hybrid dynamical system that consists of either discrete-time or continuous time 

subsystems and a rule that regulates the switching among them [1]. Continuous-time switched nonlinear systems 

can be modeled as: 

 

                                         ,                                              (1) 

where x denotes the states, x , the control u represents non-negative real numbers, the finite 

set I denotes an index set and represents the collection of discrete modes. In this way, a class of discrete-time 

switched systems can be represented as a collection of difference equations:  

 

                                     x[k+1] ;                                                 (2) 

where represents non-negative numbers. 

A collection of ‘m’ switched systems consists of m individually unstable linear and autonomous 

systems. The switching sequence decides the dynamics of the switched system by specifying the point and time 
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of switching [2]. The investigation of asymptotic stabilization of m switched systems through Lyapunov 

functions was initiated by Peleties and Marlo. Desoer in 1960s and Branicky in 1994 made the observation, to 

constrain rate of switching, Lyapunov functions could be used to derive laws in a way to ensure stability [3]. 

Liberzon showed that necessary and sufficient condition for asymptotical stability of switched systems 

was existence of a common Lyapunov function for all subsystems. Numerous techniques to construct this 

Lyapunov function were propounded by Decarlo, Branicky, Lennartson, Liberzon and Morse a few decades 

back. However, the aforementioned concept was not of much avail as finding a common Lyapunov function was 

considered difficult or sometimes, not even possible. Therefore, in many cases, each subsystem was given its 

own Lyapunov-like function that behaved like Lyapunov function when that subsystem was active.   

Interestingly, it was found that, even in the switched systems which did not possess a common 

Lyapunov function also exhibited asymptotically stable nature, under some properly chosen switching law. This 

observation found a loophole in the former notion of having a common Lyapunov function and led to the 

multiple Lyapunov function concept proposed by Peleties and DeCarlo (1991) which was later generalized by 

Branicky (1998). Multiple Lyapunov function techniques for ensuring stability of the switched systems are 

highlighted in [4-14] and many recent results in this direction are available in [15]. 

Several other approaches to the concept of stability have been defined in [16, 17, 18], including 

uniform stability, asymptotic, and exponential for switched systems. For instance, arbitrary switching problem 

can be tackled by construction of common quadratic and non-quadratic Lyapunov functions ensuring 

exponential stability. It is to be noted, that the converse may not be true, that is, the uniform exponential stability 

of systems under arbitrary switching does not mean that a CQLF (common quadratic Lyapunov Function) exists 

for its constituent systems [18]. Brayton and Tong [19], established equivalence of existence of a common 

Lyapunov function for constituent systems of a discrete time switched linear system and there is uniform 

stability of system under arbitrary switching.  

Any system is uniformly exponentially stable for arbitrary switching signals, if a strictly convex, 

positive definite function V(x) exists, homogeneous of degree 2, of the following form: 

                                                                   (3) 

 

     where   and 

                                                                                                                                     (4) 

  

for all non-zero  such that   for some  > 0, where 

Ax={ } and 

                                                                                                                      (5) 

is the usual directional derivative of the convex function V(x) [20].  

 

An effective method is to test the existence of a CQLF by using LMIs (Linear Matrix Inequalities). 

However, it has certain  disadvantages as it does not prove as to why a CQLF may or may not exist for a set of 

LTI systems and further, LMI’s have limitations in applicability when the sub-systems are large in number [20].   

It is proved by Feron in 1996 that when number of sub systems is two, necessary and sufficient 

condition for quadratic stabilizability of switched system is the existence of a stable convex combination of the 

sub-systems. In 2001, Zhai extended the results to discrete-time switched linear systems, by giving non-negative 

combination of subsystems’ Lyapunov inequalities as quadratic stabilizability condition. 

The quadratic stability for class of switched nonlinear subsystems was given by Zhao and Dimirovski 

[21] by converting it to a nonlinear programming problem and consequently deriving necessary and sufficient 

condition using Karush–Kuhn–Tucker (KKT) condition. 

Another basic tool to analyze switched systems is LaSalle’s invariance principle [22, 23]. Assuming a 

common or multiple Lyapunov functions which decrease along all trajectories with a constraint on switching 

rate, the trajectories of a switched system approach an invariant set. These aspects are proved by Bacciotti,  

Hespanha and Mancilla-Aguilar [24, 25, 26]. Recent works include that of Lee [27] and by Liu [28] on arbitrary 

and impulsive switching, respectively. 

Lie-algebraic stability criteria for switched systems are formulated for the original data. However, their 

main disadvantage is their limited applicability as they only provide sufficient but no necessary conditions for 

stability. Lie-algebraic stability criteria has been investigated by Agrachev and Liberzon [29] and stability of 

switched systems using Lie algebra is derived by Liberzon et al. [30,31] and Agrachev [32]. 

Considering the case of arbitrary switching problem, most results are based on existence of CQLFs. An 

asymptotically stable switched linear system for arbitrary switching sequences in which sub-systems don’t have 
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a CQLF, is not difficult to construct. Extensive research is being conducted to determine conditions of existence 

of non-quadratic Lyapunov functions. The converse theorem given by Molchanov and Pyatnitski’s for arbitrary 

switching, states that underlying switched linear system is asymptotically stable for a common piecewise 

quadratic or a linear Lyapunov function. Works of Rosenbrock [33] and Weissenberger [34] on Lur’e-type 

systems on piecewise linear Lyapunov functions’ existence, received acclaim in 1960s. 

Usually, systems in the real world are affected by the external interference, such as disturbance in 

control or errors on observation. Time delay usually is inevitable in dynamic systems due to the external 

environment or internal factors, such as parameter variability, measurement, transmission or transport lags, and 

computational delays [35–46]. The problem of time delays in hybrid switched systems with interaction between 

the continuous dynamics and discrete switching is more difficult to study. Sun in his pioneering work [47] 

presented stability analysis of switched system with time-delay. He worked on stability problem for switched 

systems with dwell time and assumed a constraint on derivative of time-varying delay. The stability of some 

slow switched control systems is studied [48-52]. 

The entire system is said to be exponentially stable for any switching signal if all subsystem matrices 

are Hurwitz stable (i.e., all eigenvalues lie in left half complex plane), considering time between consecutive 

switching’s (dwell time) is sufficiently large. In case of   linear switched systems with both Hurwitz stable and 

unstable subsystems and considering average dwell time to be sufficiently large along with total activation time 

of the unstable subsystems to be relatively small compared with that of the Hurwitz stable subsystems, then 

global exponential stability is ensured [53-55]. 

External disturbance inputs and time delay often lead to loss of stability for an otherwise stable system 

[39–46]. In these circumstances the input-to-state stability (ISS) must be guaranteed. The notion of ISS was first 

introduced by Sontag [56]. ISS means that if the external input is small, then no matter the initial state, the state 

must be eventually small and has proven useful in designing controllers for nonlinear systems [56-61].   

Another powerful control method to counteract external disturbances is sliding mode control technique 

[62]. The switching pattern in which switching times form an infinite sequence accumulating near final time is 

known as Fuller's phenomenon, or Zeno behavior and is fully understood from optimal control theory [63, 64]. 

Such controllers are called chattering controllers [64]. However, they can provide the desired system 

performance despite of significant uncertainties in system. Suboptimal chattering control algorithms, also 

known as second order sliding mode control algorithms, have subsequently been developed for SISO (Single 

Input-Single Output) systems [65] to guarantee asymptotic stability of closed-loop system, while retaining 

useful robustness features against matching disturbances. 

Turning to L2-gain analysis and  control problems, they have been studied in relation to algebraic 

Riccati inequalities for linear systems and Hamilton–Jacobi inequalities for nonlinear systems [66].  control 

for uncertain discrete switched systems was studied by Lin and Antsaklis in 2003.  

As mentioned before, interesting behavior can be exhibited, under appropriate switching laws by 

switched systems whose subsystems have no equilibria but behave like asymptotically stable systems near an 

equilibrium. This can be described as practical stabilizability (local behavior) and practical asymptotic 

stabilizability (behavior in a larger region) [67-71]. Their goal is to bring the system trajectories within the given 

bounds [72, 73]. Since several reported switching strategies cause undesirable Zenoness, therefore, efforts have 

been made to construct negative switching sequences by incorporating dwell-time or hysteresis in the switching 

laws [74, 75]. However, it is often the case that by introducing such modified switching laws, it is required that 

asymptotic stabilizability of equilibrium is compromised for asymptotic convergence to a neighborhood around 

equilibrium. 

 

III. Controllability Aspects of Switched Systems 
Controllability is a dynamical property which is inseparably linked to the random events that might 

occur, like system failures or other accidental disturbances [76-79]. Controllability implies the capability to 

move a system around its entire configuration space using only certain admissible controls. Controllability 

oncept for both time-invariant and time-varying linear control systems is based on state space description. 

Kalman was first to propose it in [80] for linear dynamical systems. 

Stiver and Antsaklis discussed the controllability of supervisory hybrid systems [81] using controllable 

language concept, derived from Discrete Event Systems theory [82]. Tittus and Egardt defined ‘hybrid 

controllability’ employing hybrid automation system as system model [83]. Consistent with hybrid 

controllability, Caines and Wei proposed the ‘between-block controllability’ [84]. Related definitions can be 

found in the work highlighted [84-89].  

In literature, the following definitions have been introduced depending on the type of models applied: 

approximate [90], complete [91], asymptotic [92], exact [93], constrained [94], null [95, 96], global [97], output 

[98-100] and relative controllability [101]. Various controllability problems for different systems have been 

considered in the work presented in [102-105]. 
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For more general hybrid control systems, sufficient condition for hybrid controllability was given by 

Schuppen [87].  Lemch discussed global controllability of autonomous switched hybrid systems and obtained 

sufficient conditions in terms of ‘hybrid fountains’ [85]. The necessary and sufficient conditions were derived 

by Xie, Wang and Yang [88, 89] for switched linear systems.  

Recent study by Liu, Lin, & Chen [106] on controllability was done for a class of uncertain switched 

linear systems in which the state matrices are either unknown or zero. They developed the concept which 

became useful in scenarios where system parameters were difficult to trace and were obtained with some 

approximation error. If unknown parameters values are so that corresponding switched linear system is 

controllable and system becomes structurally controllable.  

 

IV. Observability of Switched Systems 
The concept of observability is documented in the classical linear theory [107], and has gained wide 

attention. However, in the switched case it gets very complicated as the discrete modes of the switched systems 

may or may not be observed. Observability and controllability are closely related to pole assignment, structural 

decomposition and quadratic optimal control etc. One or multiple-period controllability, and observability were 

first studied for periodically switched systems in the study by Ezzine and Xie [108] and [109], respectively. 

They concluded that controllability could only be realized in n periods, where n is state dimension [110].  

It is to be noted that switching phenomena can occur due to active switching as well as component 

failures. Mode observability allows the detection of such failures by recovering initial states and switching 

signal from the output. This was studied by Babaali and Pappas in 2005 and by Elhamifar in 2009. Observability 

of linear hybrid systems is studied in [111-115], where the modes are considered to be dependent on state 

trajectory. Deterministic discrete-time switched systems are documented by Babaali and Vidal [116,117].  

There are numerous ways to define observability for linear time-invariant systems with output. 

‘Distinguishability’ states that different initial conditions produce different outputs. This property is equivalent 

to 0-distinguishability (negative initial conditions produce nonzero outputs). Thus, the state of an observable 

linear system can be reconstructed from output measurements by inverting the observability Gramian on a time 

interval of arbitrary length. However, in nonlinear context definitions of observability are not equivalent [118-

120].   

‘Detectability’ is another concept related to observability. A variant of detectability is ‘output-to-state 

stability’ where when inputs and outputs are zero, the states should converge to zero, and in general be 

ultimately bounded by magnitude of inputs and outputs. The following should hold true:  

                                                             (6) 

For every initial state . Here  represents Euclidean norm,  and  denotes sup norms of input 

and output y = h(x(t)) respectively, x(t) being the solution with x(0)=  and input u(.) on interval [0,t],  functions 

  are of class K, that is zero at zero, strictly increasing, and continuous, and  is a function of class KL, i.e. it 

decreases to zero on t and is of class K on x  [121]. At times, instead of building an observer, it is sufficient to 

construct a “norm estimator” to obtain an upper bound on the norm of the state using the output [121]. 

 

V. Important Issues of Hybrid Dynamical Systems 
Following are the basic difficulties during analysis of even simple hybrid dynamical systems: 

 Arbitrary switching- It deals with the question of common Lyapunov function existence. Converse 

theorems prove existence of common Lyapunov functions under assumption of exponential stability. 

 Dwell-time- the problem to determine minimum length of time that must elapsed between successive 

switches to ensure stability of system. Some of the recent research have been reported in [122] for neutral 

stochastic switched time delay systems, whose dynamics depends not only on the past and present states but 

also on its derivatives with delays and are subjected to environmental disturbances. [123] Addresses one of 

the most fundamental problem in nonlinear control, that is of global output feedback stabilization of 

switched nonlinear systems as separation principle no longer holds. Singular switched systems have gained 

popularity in the recent past [123-129]. Their global stabilization via dwell time approach is studied in 

[130]. 

 Stabilization- We know that switching between stable systems can create instability, similarly a family of 

individually unstable systems can be stabilized by appropriately switching between them. Since then, 

several studies have been undertaken to find a solution to problem of determining such stabilizing switching 

laws [131, 132]. 

 Chaos- Chase, Serrano, and Ramadge worked out how chaotic behavior arises while switching between 

low-dimensional linear vector fields [133].  

 Complexity- questions regarding the complexity and decidability of stability of switched systems [134,135], 
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and precise nature of connection between stability under arbitrary switching and stability under periodic 

switching rules (periodic stability) are important aspects which are needed to be explored in depth [136-

140]. 

 

VI. Future Directions 
Though extensive research is being conducted in the domain of switched systems, however, many 

problems still remain, such as; determining the stabilizing switching signals, the problem of dwell-time, and the 

stability under arbitrary switching.  

It is interesting to determine system classes, for instance, class of second order systems or pairs of 

systems with system matrices differing by a rank one matrix, for which simple conditions for CQLF existence 

can be given. One such noteworthy work is reported by Shorten et al. [141].  

A closely related problem is to determine classes of switched linear systems under arbitrary switching, 

where CQLF existence is equivalent to exponential stability.  

For the class of positive switched linear systems, where constraint is nonnegative orthant, Lyapunov 

functions may lead to less conservative stability criteria than those obtained through requiring CQLF existence. 

Thus, problem raised is to determine verifiable conditions for common co-positive Lyapunov function existence 

for families of positive LTI systems. 

Other than these issues of stability for arbitrary switching signals, another unresolved high priority 

issue is to determine non-conservative estimates of the dwell-time for constrained switching. 

To determine the stabilizing switching signals for unstable constituent systems, work of Feron et al. 

[142] provides sufficient conditions for quadratic stabilization laws. However, a query remains unsolved about 

the necessary and sufficient conditions for existence of general stabilizing switching laws.  

 

VII. Conclusion 
This paper has studied the development in the field of switched systems and underlying methodologies 

to ensure stabilization of systems with stable or unstable dynamics. Controllability and observability aspects of 

these systems are highlighted which work as basis for stability exploration of such systems. Noted contributions 

in the area of switched discrete/continuous time systems and hybrid systems are summarized for quick 

reference. Further, current status and future directions of possible scope and open challenges in this area are also 

highlighted for completeness.  
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